

Exercise 13

Based on the conditions used to carry out an exothermic reaction in a pilot single-orifice baffle COBR, propose a design for an industrial reactor capable of processing 25 times the pilot feed rate.

Neglect the baffle volume (low baffles thickness).

Pilot COBR data:

Reactor length	L_R	3 m
Baffle spacing	L	0.045 m
Reactor inner diameter	d	0.025 m
Baffle orifice diameter	d_o	0.01 m
Feed flowrate	F	$1.2 \cdot 10^{-5} \text{ m}^3 \cdot \text{s}^{-1}$
Frequency	f	1.6 Hz
Center-to-peak amplitude	x_o	$5 \cdot 10^{-3} \text{ m}$

Physical properties of reaction mixture

$$\rho = 840 \text{ kg m}^{-3}$$

$$\mu = 5 \cdot 10^{-3} \text{ Pa} \cdot \text{s}$$

$$\lambda = 0.137 \text{ W m}^{-1} \text{ K}^{-1}$$

$$c_p = 2150 \text{ J kg}^{-1} \text{ K}^{-1}$$

Solution**1. Pilot-plant key factors**

$$d_e = d \text{ (Single orifice)}$$

$$\frac{L}{d} = 1.8 \text{ (In the optimum range 1.5-1.8)}$$

$$\alpha = \left(\frac{d_o}{d} \right)^2 = 0.16$$

$$Str = \frac{d}{4 \pi x_o} = 0.40 \text{ (Slightly below optimal range 0.6-1.7)}$$

$$Re_n = \frac{\rho u d}{\mu} = 103$$

$$Re_o = \frac{2 \pi f x_o \rho d}{\mu} = 211$$

$$\psi = \frac{Re_o}{Re_n} = 2.1 \text{ (In the optimal range 2-4)}$$

$$\frac{P}{V} = \frac{2 \rho N_b}{3 \pi C_D^2} \left(\frac{1 - \alpha^2}{\alpha^2} \right) x_o^3 (2 \pi f)^3 = 39 \text{ W/m}^3 \text{ assuming } C_D = 0.7$$

(x_o and f are in the validity range of the equation $5 < x_o < 30 \text{ mm}$ and $0.5 < f < 2 \text{ Hz}$)

$$\tau = \frac{V_{pil}}{F_{pil}} = 123 \text{ s}$$

$$Nu = \frac{hd}{\lambda} = 0.0035 Re_n^{1.3} Pr^{1/3} + 0.3 \left[\frac{Re_o^{2.2}}{(Re_n + 800)^{1.25}} \right] \text{ (Assume valid for the current COBR geometry)}$$

$$Nu_{pil} = 14 \text{ (Within validity range } 100 < Re_n < 1200 \text{ and } 0 < Re_o < 800)$$

$$h_{pil} = 77 \text{ W m}^{-2} \text{ K}^{-1}$$

$$\left(\frac{A}{V}\right)_{pil} = 160$$

$$\left(h \frac{A}{V}\right)_{pil} = 1.2 \cdot 10^4 \text{ W m}^{-3} \text{ K}^{-1}$$

2. Scaleup

Factors to be kept constant: $\tau, \frac{L}{d}, \alpha, Str, \psi$

Factors that must be at least as high as in the pilot: $\frac{P}{V}, h \frac{A}{V}$

$$F_{prod} = 25 F_{pil}$$

$$\tau_{prod} = \tau_{pil}$$

$$V_{prod} = 25 V_{pil}$$

$$\frac{L_{prod}}{d_{prod}} = \frac{L_{pil}}{d_{pil}} \quad , \quad L_{R,prod} d_{prod}^2 = 25 L_{R,pil} d_{pil}^2$$

From the two latter equations and assuming geometrical similarity $\frac{L_{R,prod}}{d_{prod}} = \frac{L_{R,pil}}{d_{pil}}$, one obtains:

$$\rightarrow d_{prod} = d_{pil} \sqrt[3]{25} = 0.073 \text{ m and } L_{R,prod} = 8.8 \text{ m}$$

$$\rightarrow L_{prod} = \frac{L_{pil}}{d_{pil}} d_{prod} = 0.132 \text{ m}$$

Note: other relationships between $\frac{L_{R,prod}}{d_{prod}}$ and $\frac{L_{R,pil}}{d_{pil}}$ can be used. For instance, a reduction of the aspect ratio upon scaleup ($\frac{L_{R,prod}}{d_{prod}} < \frac{L_{R,pil}}{d_{pil}}$) would yield a smaller reactor length. In any case, the impacts on $(h \frac{A}{V}), (\frac{P}{V})$ and possibly other variables ($k_L a$, etc depending on the type of process) will have to be verified for each geometry.

$$\alpha_{prod} = \alpha_{pil} = 0.16 \rightarrow d_{o,prod} = d_{prod} \sqrt{0.16} = 0.029 \text{ m}$$

Using $f_{prod} = 1.6 \text{ Hz}$ and $x_{o,prod} = 0.014 \text{ m}$:

$$Re_{n,prod} = 878$$

$$Re_{o,prod} = 1728$$

$$\psi_{prod} = 2.0 \text{ (In the right range 2-4 to minimize axial dispersion)}$$

$$Str_{prod} = 0.42 \text{ (Slightly below desired range 0.6-1.7 but close to pilot value)}$$

$\left(\frac{P}{V}\right)_{prod} = 293 \text{ W/m}^3$ (Significantly higher than pilot value → process performance expected to be at least as high as in the pilot reactor)

$Nu_{prod} = 471$ (But correlation used outside of its validity range $100 < Re_n < 1200$ and $0 < Re_o < 800$)

$$h_{prod} = 8.8 \cdot 10^2 \text{ W m}^{-2} \text{ K}^{-1}$$

$$\left(\frac{A}{V}\right)_{prod} = 55$$

$\left(h \frac{A}{V}\right)_{prod} = 4.8 \cdot 10^4 \text{ W m}^{-3} \text{ K}^{-1}$ (Larger than pilot value but correlation for Nu used outside its validity range!)

Note: higher ΔT can be used if $\left(h \frac{A}{V}\right)_{prod} < \left(h \frac{A}{V}\right)_{pil}$